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Abstract 

To interact with the physical world, intelligent agents must infer object properties like 
elasticity by sight. While this challenges artificial systems, humans do so effortlessly. We 
showed observers physics-based simulations of chaotically bouncing cubes, where small 
differences in initial conditions produced starkly different trajectories. Yet, observers 
predicted physical elasticity accurately. Here, we propose a resource-rational model based on 
the statistics of how objects typically behave. By analyzing the simulated trajectories of 100k 
bouncing cubes, we identified 23 motion features that could be used heuristically to estimate 
elasticity. Carefully synthesized stimuli allowed us to disentangle these highly correlated 
hypotheses. We find that humans can use different motion features to judge the elasticity of 
bouncing objects but rely on only one feature at a time in any given stimulus context. 
Depending on the information available, observers switch flexibly between different 
computationally efficient yet highly informative heuristics. Because these heuristics can be 
derived from natural motion variation across situations, they could plausibly be learned in an 
unsupervised fashion from everyday experience. 
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Introduction 
To grasp, catch, stack, or avoid objects, we need to infer their physical properties such as 
elasticity, mass, compliance, or friction 1–7. In most cases, we see objects before we interact 
with them, making vision the primary source of information to perceive and predict the 
physical world. Still, researchers do not yet fully understand the cues and computations the 
brain relies on to estimate the internal properties of objects 8–22. Unlike an object’s shape, size 
or identity, physical properties like mass or elasticity can only be inferred from the observed 
behavior of the object or substance 8–10,13,14,17, e.g., how a fluid flows, jelly wobbles or a ball 
bounces. The challenging nature of such inferences is underlined by the fact that even though 
AI models have matched or surpassed human performance in tasks like object recognition23,24 
or segmentation25, they still struggle with intuitive physical reasoning26,27, especially for non-
rigid objects. What makes visual inference of physical properties so difficult? 

Consider a bouncing elastic object: How it bounces depends on many factors besides its 
elasticity, e.g., the initial direction and force with which it was thrown. An individual object 
can produce an infinite variety of trajectories, i.e., spatiotemporal paths, while objects with 
different elasticities can trace very similar paths depending on other factors, such as the 
object’s initial speed, height or direction of motion (Figure 1A). In previous work8, we have 
shown that observers estimate the elasticity of bouncing cubes based on their motion 
trajectory. But, if there is no unique mapping between an object’s elasticity and its trajectory, 
how does the brain estimate the former from the latter? 

Warren and colleagues28 suggested that observers use the relative height of a simulated, two-
dimensional ball around a bounce (i.e. the ratio of initial and final height) to visually judge 
elasticity, and the duration between two bounces when the ball’s height is occluded. While 
their study elegantly isolated different cues and demonstrated that observers are sensitive to 
them, it remains unclear how people judge elasticity in more natural settings with more 
complex trajectories and when no single cue is a perfect determinant of elasticity (such as 
relative bounce height was in their study).  

Our work addresses these two key questions: (1) How do people visually infer elasticity in 
naturalistic scenes, where no single cue alone perfectly predicts elasticity? (2) How does the 
brain learn to visually infer elasticity without ever having access to the ground truth? 
Although individual trajectories vary, motion trajectories of the same elasticity will somewhat 
resemble each other in terms of their overall characteristic motion features, e.g., bounce 
height, speed of velocity decay and trajectory length. While no individual feature is perfectly 
diagnostic of elasticity, variations across different trajectories are also not random because 
they result from lawful physical constraints. By observing a number of examples, the brain 
could learn the dominant feature dimensions along which bouncing objects vary and 
represent elastic objects within the space of these features. A given heuristic (such as the 
bounce height ratio suggested by Warren and others) could be thought of as a special 
instance of this, in which the brain might identify just one feature along which trajectories are 
varying and thus elasticity judgments will rely on. However, another possibility is that the 
brain encodes elastic objects along multiple different features which would lead to a more 
robust representation in naturalistic settings. By considering different visual features, e.g., 
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number of bounces and bounce height ratio, the brain could overcome the potential pitfalls 
of single heuristics. 
 
This idea leads to several testable predictions, which we evaluate here. First, motion features 
can be used to disentangle physical elasticity from other confounding factors (such as initial 
speed). Second, the relation between physical elasticity and motion features can be learned 
through observation alone. Third, either a single motion feature (i.e., a heuristic) or a robust 
combination of several features can explain the pattern of successes and failures in human 
perception. To test these assumptions, we employed a data-driven approach. For this 
purpose, we simulated 100,000 short (4 sec) trajectories of a bouncing cube in a room (Figure 
1A). The cube’s elasticity (coefficient of restitution) varied from 0.0 (not elastic) to 0.9 (very 
elastic) in ten steps. Importantly, we also varied the initial position, orientation, and velocity 
of the cubes to gain 10,000 different trajectories for each level of elasticity. Although 
computer simulations are only approximations of the real world, we validated that they 
reproduce several crucial physical behaviors of bouncing objects8. Only through simulation 
can we generate sufficient number and diversity of trajectories to identify and evaluate 
statistical regularities. We chose nonrigid, i.e., deformable, cubes as stimuli, because they 
result in chaotic and highly variable trajectories while being feasible in terms of the 
parameters to create and analyze them and are, thus, the ideal case example to study. Next, 
we identified 28 candidate 3D motion features (Figure 2A-D, Table 1) based on the physics of 
bouncing objects, and previously proposed cues28,29. We then determined how they 
statistically relate to physical elasticity in our dataset und used PCA to determine the optimal 
feature combination to predict elasticity. Our analysis revealed several competing hypotheses 
of how humans visually judge elasticity using motion features, all of which could be learned in 
an unsupervised fashion from observation alone. In a series of carefully designed 
experiments, we selected stimuli that systematically decouple these highly correlated 
alternative hypotheses and find the one that best predicts human perception on a stimulus-
by-stimulus basis. To begin, we first established human accuracy and consistency in elasticity 
perception in a random subset of our dataset as a benchmark to test out models of 
perception against.  
 

Results 
Observers accurately infer elasticity, but make systematic errors  
Fifteen observers rated the apparent elasticity of bouncing cubes in 150 simulated 
animations—fifteen different trajectories for each of the ten elasticities (see Methods and 
Figure 1A and Movie S1). Although the initial speed, position, and orientation of the cubes 
varied randomly, yielding widely variable trajectories, observers were very accurate at 
estimating the cube’s relative elasticity (Figure 1B). Average ratings increased systematically 
with physical elasticity (linear regression: R2 = .84, F(1, 148) = 748.73, p < .001). However, if 
observers had perfect elasticity constancy, they would give videos showing the same elasticity 
the same ratings. This is not what we found: Cubes with identical physical elasticity were 
perceived to have different elasticities (average SD per elasticity level was 0.09 and 
significantly different from zero: t(9) = 16.40, p < .001). Importantly, the pattern of errors was 
not random but highly consistent between different observers (r = .91 ± .04; M ± SD) as well 



 4 

as within repeated ratings of the same individual (r = .90 ± .04). In fact, there was no 
significant difference between intra- and inter-observer variability (t(14) = 2.08, p = 0.056). 
What causes this systematic pattern of errors? If humans represent elastic objects in terms of 
their characteristic motion features, perceptual errors should occur whenever a trajectory 
falls onto an “atypical location” in that feature space. In the following, we test this prediction. 

 

Figure 1. Stimuli and results of Experiment 1. A) Example stimuli of lowest (e = 0.0) and 
highest elasticity (e = 0.9), frames of the animations were overlaid for illustration purposes. 
Even though both images in each row show the same cube (i.e., the same physical properties), 
the trajectories are different because we randomly varied the initial speed, position, and 
orientation. B) Average elasticity ratings of Experiment 1 together with a linear fit. Dots of the 
same color show simulations of the same elasticity but varying initial parameters.  

 
Motion features disentangle physical elasticity from other latent factors 
We propose that the brain represents trajectories of bouncing objects using one or more 
spatiotemporal features and infers elasticity from their systematic variation. To test this 
hypothesis, we explored a set of motion features derived from the 3D trajectories of the 
object. We started with 28 potential features that between them capture many aspects of 
bounce trajectories (Table 1; see Table S1 for additional details). The features were selected 
by: (a) consideration of the physics of ideal bouncing objects, (b) proposals from previous 
literature28,29, and (c) subjective observations of the simulations. Some features describe 
characteristics of individual bounces (e.g., average bounce height, rebound velocity) or 
measure the coefficient of restitution in simplified, idealized settings (e.g., bounce height 
ratio). Others capture summary statistics that integrate over time and might be useful in 
realistic scenes that deviate from ideal conditions (e.g., number of bounces, movement 
duration; Figure 2A-B). Such statistics provide several different ways of measuring how 
quickly the object dissipates kinetic energy as it bounces around. All motion features are 
stimulus computable from observable quantities, i.e., positions and changes of positions over 
time, and derived from first principles. We computed the motion features from the 
trajectories of the cube’s center of mass (CoM) and eight corners for all 100,000 simulations 
(see Methods and Supplementary Methods). Although object rotation and deformation are 
important for a complete physical representation of the object’s motion, we do not consider 
them here, as our previous findings show that they have a negligible effect on the perceived 
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elasticity in these stimuli8. With this exception we aimed to achieve a comprehensive 
characterization of the trajectories by defining a diverse set of features to follow a data-
driven approach and constrain our hypothesis space based on the data rather than a priori 
assumptions. 

 

Table 1. Motion features with % variance in physical elasticity explained. Grey features excluded from further analysis 
% Feature (acronym; unit) 

82.29 Movement duration until the cube stopped moving. (movDur; sec) 
78.93 Number of bounces from the floor, the ceiling and the walls. (nBounce) 
78.92 Duration until the cube landed after the last bounce from any wall. (bounceDur; sec) 
77.87 Number of bounces from the floor. (nBounceFloor) 
67.27 Cumulative length of the motion trajectory. (trajLen; m) 
52.76 Mean ratio of energy before and after a bounce. (mEnerRatio) 
51.91 Mean acceleration over time. (mAccel; m/s2) 
50.80 Conserved energy over time. (consEner) 
45.85 Maximum ratio of energy before and after a bounce. (maxEnerRatio) 
44.86 Maximum length of bounce arcs from floor (maxArcLenFloor; m) 
41.80 Mean ratio of incident to rebound velocity of all bounces. (mVelRatio) 
39.42 Maximal ratio of incident to rebound velocity of all bounces. (maxVelRatio) 
36.51 Maximal ratio of durations of consecutive bounces from the floor. (maxBounceDurRatio) 
35.46 Maximal duration of individual bounces from the floor. (maxBounceDur; sec) 
35.21 Maximal rebound velocity of bounces from every wall. (maxReboundVel; m/s) 
35.13 Maximal ratio of bounce heights of two consecutive bounces from the floor. (maxBounceHtRatio) 
35.10 Maximal height of bounces from the floor. (maxBounceHt; m) 
30.84 Mean ratio of bounce durations of consecutive bounces from the floor. (mBounceDurRatio) 
23.42 Mean ratio of bounce heights of two consecutive bounces from the floor. (mBounceHtRatio) 
16.25 Maximal length of bounce arcs, i.e., trajectory between consecutive bounces. (maxArcLen; m) 
6.24 Mean height of bounces from the floor. (mBounceHt; m) 
5.49 Mean velocity over time. (mVel; m/s) 
5.25 Mean length of bounce arcs, i.e., trajectory, between consecutive bounces. (mArcLen; m) 
4.06 Mean length of bounce arcs from floor. (mArcLenFloor; m) 
1.86 Difference between movement and bounce duration. (otherMotionDur; sec) 
0.77 Mean duration of individual bounces from the floor. (mBounceDur; sec) 
0.15 Mean height of the object over time. (mHeight; m) 
0.01 Mean rebound velocity of bounces from all walls. (mReboundVel; m/s) 

 

First, we evaluated how well each of the individual features captured the variance across 
different elasticities. We found that many features varied systematically with physical 
elasticity (Figure 2C-D & 3B, Table 1). The most diagnostic features (which share the most 
variation with physical elasticity) were those that integrate information over time, such as 
movement duration or the number of bounces. Interestingly, we found that heuristics that 
were previously identified for idealized settings, e.g., related to the height and duration of 
bounces, were not among the best features in our complex scenario. We narrowed our 
hypothesis space by excluding features that explained < 5 % of the variance from further 
analysis (greyed items in Table 1). We found that the remaining 23 features were significantly 
correlated with one another across the set of 100,000 trajectories (mean absolute 
correlation, M = 0.48; see Figure S1). To identify independent dimensions of variation, we 
applied principal component analysis (PCA) to the normalized and equalized motion features 
of all trajectories. Representing the trajectories in the space of the first two PCs reveals that 
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physical elasticity varies largely along the first dimension (Figure 2E). Indeed, we found that 
ground truth elasticity and the first PC share 82.83% of their variance. In other words, physical 
elasticity emerges as the latent variable driving most variance in the feature representation of 
all trajectories. Although adding further PCs necessarily increases the explained variance of 
the dataset (Figure S2A), adding more PCs to a multiple linear regression model fitted to 
physical elasticity does not increase the shared variance by much (with all PCs: 86.25%). 
Moreover, while PC1 robustly predicts physical elasticity, it is mostly independent of the other 
latent parameters we used to initialize our simulations (e.g., velocity; all < 1.0%, Figure S2B). 
Thus, this linear combination of motion features (see Figure S3 for feature loadings) 
successfully disentangles physical elasticity from other scene factors that contribute to the 
raw physical trajectory of bouncing objects. Notably, this feature weighting is not the result of 
a fitting process but emerges naturally and without supervision from the statistics across 
many examples. This underlines the potential of motion features to form a statistical 
appearance model of bouncing objects in a completely data-driven fashion. In the following 
we test whether PC1 can explain the perceptual patterns found in Experiment 1 (‘multi-
feature model’). Importantly, applying a PCA to the raw motion trajectories (Figure 2F) does 
not yield comparable elasticity estimates—highlighting the crucial role of appearance 
features.  

 

Figure 2. Spatiotemporal motion features of bouncing objects. A) Example trajectory of a low 
(e = 0.0) and high (e = 0.9) elastic cube, each dot represents one frame; color gradient 
represents movement duration. B) The same two trajectories, red dots represent bounces off 
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the floor. C) Distribution of movement durations in the set of 100,000 trajectories, true 
elasticity is color-coded. D) Distribution of “number of bounces off the floor” in the set of 
100,000 stimuli. E) All 100,000 simulations in the space of the first two PCs resulting from a 
PCA on the motion features (“feature space”). Physical elasticity (color-coded) seems to vary 
mainly along the first PC, which explains most of the variance. F) 100,000 trajectories in the 
space of the first two PCs resulting from a PCA on the raw trajectories. Rather than physical 
elasticity (color-coded), the PCs seem to be related to the position of the cube in 3D space. 
Note that although the initial position of the cube is uniformly sampled, its 3D position over 
time is biased due to gravity. This results in a tilted square in the 2D representation of the PCs. 

 

Optimal motion features predict elasticity perception 
Having established that motion features are highly diagnostic of physical elasticity and that 
their relation to elasticity can be learned without supervision from observation alone, our 
analysis revealed several strong hypotheses for how the brain could visually infer elasticity. 
Next, we sought to answer the key question whether the human brain relies on a single 
motion feature (i.e., a heuristic) when estimating elasticity or instead combines different 
visual features to a potentially more robust estimate, similar to PC1.  

Interestingly, we found that motion features that turned out to be good, i.e., diagnostic, 
heuristics of physical elasticity, were also the best to predict perceived elasticity in 
experiment 1 (Figure 3B). Strikingly, movement duration, the best feature for predicting 
physical elasticity, was also the best to predict perceived elasticity (R2 = .91, F(1, 148) = 
1515.1, p < .001, Figure 3A-B). On a stimulus-by-stimulus basis, movement duration was a 
better predictor of human ratings than physical elasticity (evidence ratio: wmovDur/wPhysics = 
1.51e+20). Can a combination of features outperform this? We find that a multi-feature 
model, i.e., PC1, is a very good predictor of perceived elasticity in Experiment 1 (linear 
regression: R2 = .89, F(1, 148) = 1210.5, p < .001, see Figure 3B-C). This is impressive given 
that the feature weighting was derived from observing the covariation of features in a large 
data set rather than a fitting procedure to the perceptual (or any) data. PC1 predicts 
perception better than the ground truth does (evidence ratio: wFeatureModel/wPhysics = 3.38e+13), 
but worse than movement duration (evidence ratio: wmovDur/wFeatureModel = 4.46e+06; wmovDur ≈ 
1). However, the predictions of both models are strongly correlated (r = .95, p < .001, in the 
complete data set). In Experiment 2 we therefore systematically decouple their predictions. 
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Figure 3. Prediction of perceived elasticity by different compteting models. A) Perceived 
elasticity (in Experiment 1) as a function of the prediction made by the statistically optimal 
feature: movement duration. B) Explained variance in terms of perceived elasticity (in 
Experiment 1) as a function of explained variance of physical elasticity (in the data set of 
100,000) for individual features (blue) and the multi-feature model (PC1, red). The noise ceiling 
shows the average explained variance between individual subjects and the average subject (± 
95%-CI). C) Rated elasticity from Experiment 1 as a function of the prediction made by the 
feature combination from PC1, i.e., the multi-feature model.  

 

When observing complete motion trajectories people use movement 
duration as a heuristic to elasticity  
The aim of Experiment 2 was threefold: First, we systematically decoupled the predictions of 
the multi-feature model from those of the movement duration heuristic to bring both models 
into conflict. Second, in order to test whether any of the other features are—individually—a 
better predictor of perceived elasticity, we systematically decoupled all other features from 
the multi-feature model. Since it is impossible to isolate each of the 23 features from all other 
features one by one, we decoupled each feature from the weighted combination of all 
features to test its causal contribution to elasticity perception. In doing so, we are able to 
overcome the purely correlational analysis reported so far and experimentally tests 24 
competing hypotheses at once, thereby going beyond previous studies 9–15. Third, because 
any good model of elasticity perception should be able to predict the pattern of errors on a 
stimulus-by-stimulus basis, all stimuli in this experiment had the same physical elasticity, i.e., 
all perceptual differences are illusory. This provides an even more stringent test of our 24 
competing models.  

For this purpose, we simulated another 90,000 motion trajectories of the cube with medium 
elasticity (e = 0.5). From the total of 100,000 simulations of medium elasticity, we selected 23 
sets of stimuli (one for each of the candidate motion features) for which individual feature 
and multi-feature model predictions were essentially uncorrelated (|r| < .05; see Methods 
and Figure S4 for more details). A new group of 30 participants judged the elasticity of these 
stimuli. Note that this rigorous stimulus selection process risks diminishing the very effects we 
seek to find: We first narrow the range of features by keeping elasticity constant and then 



 9 

select stimuli that, by definition, include outliers with a low correlation between a given 
feature and PC1.  

Although these careful steps may have limited our statistical power, Experiment 2 provided 
clear results. For each feature, Figure 4A shows the correlation of perceived elasticity in the 
specific stimulus set (chosen for that feature) with the feature prediction (x-axis) and the 
multi-feature model prediction (y-axis). Seventeen features show a significantly lower 
correlation with perception than the multi-feature model (p < .0022, Bonferroni corrected). 
Only for one feature—movement duration—does the correlation with perception (r = .45) 
significantly exceed the multi-feature model (r = .07, p < .0022). In other words, when 
brought directly into conflict, movement duration can explain perceived elasticity better than 
a weighted feature combination. Thus, the high correlation between the multi-feature model 
and perception in Experiment 1 is presumably mediated by the contribution of movement 
duration (which has the third highest loading of all features to PC1). Is movement duration 
also driving the high correlations between the multi-feature model and perception in the 
other stimulus sets of Experiment 2? Figure S5B shows the partial correlations between 
perception and single features vs. perception and multi-feature model prediction when 
controlling for the effect of movement duration. The correlations between perception and 
multi-feature model (r = .56 ± .14 (M ± SD)) decrease significantly when controlling for 
movement duration (r = .12 ± .11; t(21) = 12.97, p < .001), indicating that movement duration 
is indeed the driving factor.  Across all stimuli, movement duration was—again—the best 
predictor of perceived elasticity (R2 = .78, F(1, 223) = 787.61, p < .001, see also Figure 4B and 
S5A). Thus, the longer an object moved in the scene, the more elastic it appeared. Experiment 
2 showed that this relation holds true even if physical elasticity is constant, leading to a 
powerful perceptual illusion. Supplementary Movie S2 demonstrates these large, systematic, 
and robust illusory differences in apparent elasticity.  

 

 

Figure 4. Results of the decorrelation experiment. A) Correlation of the pooled perceptual 
ratings with the multi-feature model (y-axis) and the individual features (x-axis). Each dot 
represents the correlations for one set of stimuli that were specifically selected to decouple the 
prediction of one feature from the model. Features that fall below the diagonal (light blue 
shaded area) exceed the model, i.e., their predictions correlate more strongly with perception 
than the model does. Filled dots indicate a significant difference between the two correlation 
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coefficients. Error bars show 95% confidence intervals. Please note, that the correlation 
coefficients are lower than in Experiment 1 because the data is pooled across participants 
(instead of averaged) to get a more reliable estimate from the small number of stimuli in each 
set. For the noise ceiling, we calculated for each stimulus set how much the pooled responses 
correlate with the average response. The noise ceiling shows the mean (± 95 % - CI) across 
features. B) Average elasticity ratings for all stimuli of Experiment 2 as a function of 
movement duration together with a linear fit. Elasticity ratings clearly increase with an 
increase in movement duration. All stimuli had the same physical elasticity of 0.5 (grey line). 
Thus, all perceived differences in elasticity between stimuli are illusory. 

 

Observers flexibly switch to another heuristic when movement duration is 
unobservable  
Our everyday experience suggests that we are able to judge an object's elasticity even 
without observing for how long the object moves, e.g., if someone catches it before it comes 
to rest. To study systematically whether and how well people can estimate elasticity when 
this one cue is not available, we truncated a subset of the videos from Experiment 1 to exactly 
1 second and presented these to a new group of 15 observers in Experiment 3, see Movie S3. 
In these videos it was not possible to observe movement duration. Yet, we found that the 
average elasticity ratings increased systematically with physical elasticity (linear regression: R2 
= .73, F(1, 78) = 215.41, p < .001, see Figure S6A) and showed a near-perfect correlation (r = 
.97, p < .001) with ratings for the full movies (Exp. 1; see Figure 5A), although the consistency 
between observers was moderately lower here (r = .80 ± .16, M ± SD) than in Experiment 1 (r 
= .91 ± .04; t(28) = -2.63, p = .05). How do observers infer elasticity when movement duration 
cannot be observed? Do they rely on a different heuristic? 

Truncating the videos altered most feature values, not just movement duration. Figure 5B 
shows how well the multi-feature model and the individual features can predict physical as 
well as perceived elasticity in 1-sec movies. The multi-feature model was the best at 
explaining both physics and perception and again better explains perception than ground 
truth physics (R2 = .77, F(1, 78) = 260.27, p < .001; evidence ratio: wFeatureModel/wPhysics = 
296.05; see also Figure S6C). Several individual features, particularly those measuring the 
presence of large bounces in the trajectory (such as maxArcLenFloor or maxBounceHt), also 
capture a large proportion of the variance in perceived elasticity. To disentangle these 
competing, but correlated hypotheses, we conducted Experiment 4 following the same logic 
as in Experiment 2: From the dataset of 100,000 cubes of medium elasticity, we first 
identified the simulations that had a movement duration of at least 1 sec. For this subset, we 
calculated the motion features for the first second and then selected 22 sets of stimuli (one 
set for each feature except movement duration) in which the prediction of that feature 
individually was uncorrelated with the prediction of the multi-feature model. A new group of 
30 observers estimated elasticity in these 1-sec stimuli.  

Again, we found that one of the most diagnostic features—maximum bounce height—
showed a significantly higher correlation with perception than the multi-feature model (r = 
.54 > r = .25, p < .0023, see Figure 5C) when brought directly into conflict, and that was the 
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best predictor of perceived elasticity across all stimuli in Experiment 4 (R2 = .74, F(1, 197) = 
565.56, p < .001, see Figure 5D and S7A). Thus, the higher the largest bounce was, the more 
elastic the cube appeared even if the true elasticity was equal (see Movie S4). There was only 
one other feature—bounce duration—for which the correlation between feature and 
perception was larger than the correlation between multi-feature model and perception (r = 
.36 > r = .10, p < .0023). However, bounce duration did not vary much in the stimulus set, 
because in most simulations the cube would have bounced for longer than 1 second had the 
movie not been truncated (see Figure S7C). Therefore, bounce duration was only a diagnostic 
feature when it was notably shorter than one second. For most (12/22) features, we found 
that the multi-feature model predicted the data better than the individual features (p < .0023, 
Bonferroni corrected). Akin to the results of Experiment 2, these high correlations seemed to 
be driven by the best single feature, maximum bounce height (see Figure S7B). More 
precisely, the correlations between perception and multi-feature model (r = .49 ± .16 (M ± 
SD)) decreased significantly when controlling for maximum bounce height (r = .23 ± .09; t(21) 
= 6.65, p < .001). 

In sum, Experiment 4 showed that observers reported robust perceptual differences between 
truncated stimuli even though all had the same physical elasticity. Perceived elasticity was 
best explained by one of the most predictive features, maximum bounce height. Intuitively 
this makes sense, as the maximal bounce height is easy to compute (i.e., requires only one 
position) and it occurs within the first second in most trajectories (94.1%, see Figure S8).  
Taken together, this suggests that if unable to fully observe an object’s movement until it 
comes to a standstill, we instead form an impression of its elasticity based on the highest of 
the bounces that it makes. 
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Figure 5. Results of Experiments 3 and 4 with truncated movies. A) Average perceived 
elasticity in 1-sec movie clips (Exp. 3) as a function of the movement duration of the apparent 
elasticity in full movies of the same stimuli. Physical elasticity is color-coded. B) Explained 
variance in terms of perceived elasticity (in Experiment 3) as a function of explained variance 
of physical elasticity in 1-sec movies (in the data set of 100,000) for individual features (blue), 
the multi-feature model (red). For a legend of individual features see Figure 2G. The noise 
ceiling shows the average explained variance between individual subjects and the average 
subject (± 95%-CI). C) Correlation of the pooled perceptual ratings with the multi-feature 
model (y-axis) and the individual features (x-axis). Each dot represents the correlations for one 
set of stimuli that were specifically selected to decouple the prediction of one feature from the 
model. Features that fall below the diagonal (light blue shaded area) exceed the model, i.e., 
their predictions correlate more strongly with perception than the model does. Filled dots 
indicate a significant difference between the two correlation coefficients. Error bars show 95% 
confidence intervals. For the noise ceiling, we calculated for each stimulus set how much the 
pooled responses correlate with the average response. The noise ceiling shows the mean (± 95 
% - CI) across features. D) Average elasticity ratings of Experiment 4 as a function of the 
maximum bounce height together with a linear fit. Elasticity ratings clearly increase with an 
increase in maximum bounce height. All stimuli had the same physical elasticity of 0.5 (grey 
line). 
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Discussion 
Here we propose that when visually judging the physical properties of objects and materials, 
people often represent them in terms of their typical appearance—i.e., in terms of their 
typical mid-level spatiotemporal features. Specifically, our results suggest that when asked to 
judge the elasticity of a bouncing object, observers judge how long the object moves. If the 
motion duration is cut short, i.e., it cannot be observed, observers instead rely on the 
maximal bounce height to judge elasticity. This implies a flexible and computationally efficient 
strategy.  

While this study is not the first to suggest a role of mid-level features in the estimation of 
physical properties9–15,17,30, it overcomes three critical limitations of previous work. First, we 
assess the statistical relations between a diverse set of potential visual features and physical 
elasticity in a large dataset and thereby show how—in principle—observing the variations of 
motion features in many examples spontaneously reveal elasticity and establish which 
features (or their combination) are best at doing so. Second, to the best of our knowledge, no 
study has yet manipulated the proposed visual cues to physical properties in naturalistic 
stimuli. Here, we achieved such manipulation by using a large dataset to identify stimuli that 
decouple the inherently correlated predictions of different models. Third, we identified 
illusory stimuli that decouple feature predictions from ground truth physics. Thus, we not only 
predict the good overall performance of observers in elasticity estimation but, critically, also 
their specific perceptual errors on a stimulus-by-stimulus basis. Our findings have implications 
on both theoretical and methodological levels. 

Learning. We have previously hypothesized that by observing the outside world and its 
inherent statistical relations31,32, the brain can learn—in an unsupervised manner—many 
dimensions along which objects in our environment vary. The statistical appearance model 
proposed here is not intended as a model of this learning process, but rather a proof of 
principle about the learnability of the cues and the impact that such unsupervised statistical 
observation approaches have on perception. We found that by observing various motion 
features of bouncing cubes, elasticity emerges spontaneously as the main dimension of 
variation. The motion features themselves were not the result of learning from the stimulus 
set but instead were explicit operationalizations of our hypotheses. This approach allowed 
testing the contribution of a large, yet testable number of interpretable motion features and 
their combination. Would similar features emerge from applying unsupervised or self-
supervised learning algorithms? It would be interesting to investigate this question within 
different frameworks, from deep learning to program learning or simulation-based learning. 
For example, might the same heuristics be derived within a mental physics simulation model? 
How would the latent feature space of an (unsupervised) deep learning model compare to 
the motion features identified here? However, it would be practically impossible to test the 
individual contribution of the thousands of features in the trained network to perceived 
elasticity. Yet, here, it is precisely this decoupling of competing hypotheses that ultimately 
enabled us to predict human perception on a stimulus-by-stimulus basis. 

Mid-level features. One of our key findings is that when asked to estimate the elasticity of 
bouncing objects, observers judge the movement duration or the maximal bounce height in 
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case the duration is visibly cut short. Crucially, this implies that the brain does represent 
multiple features of bouncing objects at a time but does not combine them in the sense of 
classic cue combination33 to estimate the latent parameter (elasticity). If the brain represents 
bouncing objects in terms of their visual motion features, as our results suggest, ‘estimating 
elasticity’ means determining the relative position of the observed object on the feature 
manifold. Across four experiments, we found that observers base their elasticity estimates on 
only 2-3 visual features. Why would the brain rely on these and not on other features? 
Presumably, the most effective features are both salient and inexpensive to compute. 
Movement duration and maximum bounce height both capture important events in the 
observed motion, i.e., the largest bounce and the end of the motion. It is not trivial to 
determine the computational costs of different features. Yet, at a minimal level, it seems 
plausible to assume that single measures, e.g., height or duration, will be computationally 
cheaper than their derivatives or ratios. In that sense, movement duration and maximum 
bounce height, are among the computationally simplest features we tested. Duration and 
spatial distance are quantities the visual system can estimate reliably and accurately34–37.  

Even though we found strong evidence that humans base their elasticity estimates mainly on 
two motion features, some other features may play an important role in identifying the 
stimulus as a bouncing object in the first place. A key assumption of our model is that the 
observed motion is due to a semi-elastic object bouncing in an environment, as opposed to 
some other cause (e.g., animate motion38, fluid flow13,14,39). If applied to other trajectories the 
resulting ‘elasticity estimate’ would be meaningless, e.g., for a feather gliding in the wind or a 
driving car. An important line of future research is to investigate the cues underlying the 
recognition process through which we identify the stimulus as a bouncing object in the first 
place. 

The motion features we tested here are stimulus-computable, yet they assume a perfect 
representation of the object’s trajectory. As such, they oversimplify the input available to 
elasticity-estimating processes in the biological brain. For example, humans have a more 
accurate representation of image-plane motions than motion in depth40,41, and may not be 
equally sensitive to all velocities in these displays. Thus, to transform the heuristic model into 
a truly image-computable one, future work will also need to incorporate aspects of low-level 
vision, including object segmentation. Yet we reasoned that important insights into the 
estimation of material properties can still be gained even without fully modeling all preceding 
processing stages. 

Generalization. Deformable cubical objects produce diverse and complex trajectories. We 
have shown that visual motion features generalize across large variations caused by several 
independent factors. Movement duration and maximum bounce height are likely to 
generalize to some extent across other scenes and objects. For example, if the object had a 
different shape or if it interacted with other objects in a different space, higher elasticity 
objects would still tend to move longer and bounce higher. Participants presumably had little 
experience with bouncing non-rigid cubes prior to our experiments. Yet, they were broadly 
able to judge elasticity reliably, suggesting they could generalize from previous experience 
with other scenes and objects. In an experimental setting, it would be possible to break the 
relation between motion features and elasticity. For example, if the floor was completely 



 15 

inelastic, like sand, no object would rebound. It is, however, unlikely that human observers 
would be able to estimate the objects’ elasticity in these cases. Thus, although motion 
features would not capture physical elasticity, they might still be reliable predictors of 
perceived elasticity. Because our model is stimulus computable (based on the true or 
estimated 3D position), such hypotheses can be easily tested in future research.  

Simulation vs. heuristics. A current topic of active discussion is the extent to which physical 
perception and reasoning proceed through sophisticated but computationally costly internal 
simulations19–22,42 or cheaper but potentially less accurate heuristics9,10,43,44. How do our 
results fit into this theoretical spectrum? Representing objects and materials in terms of their 
appearance features entails an understanding of the observable consequences of natural 
variations between objects, e.g., the ways in which elastic objects bounce. Yet, the resulting 
estimation strategy appears like a classic heuristic, i.e., a simple but sufficient rule of thumb 
such as “the longer it moves, the more elastic it is”. In fact, our results could provide an 
explanation of how the brain derives such heuristics from observation alone and of how it 
switches from using one feature to another (i.e. when there is no variation along the first 
feature dimension). This does not mean that observers cannot simulate possible future 
behaviors of objects, such as how the trajectory of a bouncing cube continues, just that they 
may not choose to do so when simpler yet near-optimal heuristics are available. This 
interpretation is consistent with previous work by Battaglia and colleagues20, who found that 
when a simple heuristic is a more efficient and optimal way to make a prediction (e.g., “How 
far will the blocks fall when the block tower falls over?”, observers tend to use such heuristics 
(e.g., height of the tower) rather than simulation.  Thus, we suggest that observers can draw 
on different forms of computation, but do so taking into consideration the relative costs and 
demands of the specific task at hand—an example of bounded or computational 
rationality45,46. For example, when asked to infer a single parameter (e.g., elasticity) from an 
observed trajectory, time- and energy-consuming simulations represent a poor allocation of 
resources when a simple read-out from the feature estimation provides high accuracy. 
However, visual features are likely too inaccurate when making time- or location-critical 
predictions about an object’s future trajectory7,47,48. Under these conditions, the additional 
costs associated with internal simulation may pay off. Similarly, when no standard heuristics 
apply, observers may use simulation even for physical inference of material properties, such 
as mass, as shown by Hamrick et al21. Future studies should further investigate the different 
cognitive strategies humans use under various circumstances as well as the metacognitive 
process that switches between different strategies.    

Conclusion 
Visually estimating physical object properties is a crucial, yet computationally challenging 
task. The visual input is highly ambiguous because an object’s behavior depends on numerous 
entangled factors. Estimating the elasticity of a bouncing object requires disentangling the 
different causal contributions of elasticity, initial speed, position, and other factors. Using a 
‘big data’ approach, we showed that representing trajectories in terms of their characteristic 
spatiotemporal features—such as the maximum bounce height or movement duration—
yields elasticity estimates that are inexpensive to compute and robust to external factors. Our 
experiments suggest that the brain estimates elasticity by flexibly switching between a few 



 16 

single-feature heuristics based the information available in the stimuli. Our model explains 
both the broad successes and the systematic failures of human elasticity perception and 
correctly predicts a novel illusion in which appearance features maximally diverge from 
ground truth. Observers can draw on multiple cues and computations, and appear to select 
strategies with lower computational costs, i.e., computationally rationally. Similar principles 
might underlie the visual perception of other physical objects properties, such as mass or 
softness.  

Methods 
Physical simulations 
The dataset was created with the Caronte physics engine of RealFlow 2014 (V.8.1.2.0192; 
Next Limit Technologies, Madrid Spain), a 3D dynamic simulation software. The dataset 
contains 100,000 simulations of a cubical object (0.1 m3) bouncing in a cubical room (1.0 m3). 
We chose a cube as the target object because it produces a greater variety of trajectories 
than, for example, a sphere because the rebound direction depends not only on the direction 
of the object but also its orientation. We have previously shown that human observers can 
judge the elasticity of a bouncing cube in such a scene8. We varied the cube’s elasticity in ten 
equal steps from 0.0 to 0.9. This value corresponds to the coefficient of restitution—the 
proportion of energy the cube retains upon collision. We created 10,000 simulations for each 
level of elasticity by randomly varying its initial velocity, orientation, and position, while 
keeping all other parameters constant. We simulated 121 frames at 30 fps of the cube moving 
through the room under gravity. In addition to the original dataset, we simulated another 
90,000 trajectories of just one elasticity (0.5). As before, initial velocity, orientation, and 
position varied randomly. We used the 90,000 simulations + 10,000 simulations of the 
medium elasticity from the original dataset to search for stimuli in Experiments 2 and 4.  

Motion features and multi-feature model 
We calculated 28 motion features based on the CoM and the eight corners of the cube for all 
100,000 simulations. The end of the cube’s movement was defined as the point at which its 
velocity dropped below 0.003 m/s, since simulated velocity never reaches zero. All other 
features were computed only for the frames in which the cube was moving. The exact 
definition of all 28 motion features is described in Table S1 and Figures S9-26. Next, we 
normalized every motion feature to a range between [0.0, 1.0] and equalized their 
histograms. We determined the R2-score, the shared variance with physical elasticity, for each 
feature and excluded features from further analysis if they explained <5% of the variance. We 
performed a principal component analysis (PCA) with the remaining 23 features. The resulting 
scores of the first principal component (PC) were used to predict perceived elasticity. See SI 
Results for details on PCA. 

 

Psychophysical experiments 
Participants. Ninety undergraduate students (68 females) from the University of Giessen 
participated in the experiments (15 in Exp. 1 and 3, 30 in Exp. 2 and 4). Their average age was 
24 years (SD = 3.5 years). No person participated in more than one experiment. All 
participants were naïve with regard to the aims of the study and they gave written informed 
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consent before the experiment. Participants were compensated with 8€/h. The experimental 
procedure was in accordance with the declaration of Helsinki and approved by the local ethics 
committee (LEK FB06) at Giessen University.  

Stimuli. Experiment 1 contained 15 stimuli per level of elasticity, randomly selected from the 
original dataset (i.e., 150 stimuli). For Experiment 2 we selected 225 stimuli that 
systematically decoupled the predictions of each individual feature from both the multi-
feature model and physical elasticity. Specifically, for each of the 23 features we chose ten 
stimuli from the medium elasticity dataset for which the predictions of the individual feature 
and the multi-feature model were uncorrelated (|r| < 0.05), while spanning the widest 
possible range on both dimensions (Figure S4). In Experiments 1 and 2, each stimulus was 
presented for the full duration of the cube’s movement. In Experiments 3 and 4, only the first 
second of each stimulus was presented (and no stimulus had a movement duration that was 
shorter than 1 sec). For Experiment 3, we used a random subset of eight stimuli per elasticity 
level from the stimuli of Experiment 1 (i.e., 80 stimuli). For Experiment 4, we selected 213 
stimuli that systematically decoupled the predictions of each individual feature (except 
movement duration) from both the prediction of the multi-feature model and physical 
elasticity. The selection procedure was the same as in Experiment 2, but all stimuli were 
truncated to exactly one second.  

The simulations selected as stimuli were rendered using RealFlow’s built-in Maxwell renderer. 
The room was rendered with a white matte material, and the target object was rendered with 
a blue opaque material. The scene was illuminated brightly using an HDR map through the 
transparent ceiling.  

Set up. All experiments were conducted using the same setup. Stimuli were presented on an 
Eizo LCD monitor (ColorEdge CG277; resolution: 2560 × 1440 pixels; refresh rate: 60 Hz). 
Participants used a chin rest to maintain a constant viewing distance of 54 cm. At this 
distance, the stimuli had a visual angle of 19.6 x 19.6 degrees.  

Procedure. All experiments followed the same basic procedure. Participants were instructed 
to watch a short movie of an object and rate its elasticity. Elasticity was defined to them as 
the property that distinguishes for example a bouncy ball from a hacky sack. On each trial, 
one stimulus was presented in a loop until a response was given. Below the movie, a 
horizontal rating bar was displayed, ranging from ‘not elastic’ to ‘very elastic’. Participants 
adjusted a slider along the bar to indicate their rating. Each stimulus was repeated three 
times over the course of the experiment, and all stimuli were presented in random order. 
Before the main experiment, participants completed ten practice trials, one for each level of 
elasticity (unknown to participants) to provide an impression of the stimulus range without 
biasing their response scale. The experimental code was written in Matlab 2018a using 
Psychtoolbox 349–51.  

Analysis. In all experiments, we averaged across repetitions to obtain one rating per stimulus 
from every participant. For Experiments 1 and 3, we calculated the average across 
participants, as well as inter- and intra-observer variability (standard deviation). We fitted 
linear regression models to the average elasticity ratings using either physical elasticity, the 
multi-feature model, or each of the individual feature as predictors. Models were compared 
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using AIC values, specifically their Akaike weights and evidence ratios52. Akaike weights 
represent the probability that a given model is the best among those tested, while evidence 
ratios indicate the relative likelihood of two competing models given the data. For 
Experiments 2 and 4, we pooled the data across participants. For each feature’s stimulus set, 
we computed correlations between pooled ratings and both the corresponding feature 
prediction and the multi-feature model prediction. Pooling (rather than averaging) allowed 
more reliable estimation of the correlation coefficients based on full trial counts rather than 
just 10 averages. For each feature, the resulting correlation coefficients were compared using 
a two-tailed significance test for dependent groups with one overlapping variable53. 
Additionally, we computed the explained variance in perceived elasticity (averaged across 
participants) for each feature and the model across all stimuli, independent of the stimulus 
set.  
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